The Steam Phase Diagram

The data provided in the above steam tables can also be expressed in a graphical form. Figure below, illustrates the relationship between the Enthalpy and Temperature of the various states of water and steam; this is known as a phase diagram.

Steam Phase Disgram

As water is heated from 0°C to its saturation temperature, its condition follows the saturated water line until it has received all of its liquid enthalpy,  hf, (A-B).

If further heat continues to be added, the water changes phase to a water/vapor mixture and continues to increase in enthalpy while remaining at saturation temperature, hfg, (B – C).

As the water/vapor mixture increases in dryness, its condition moves from the saturated liquid line to the saturated vapor line. Therefore at a point exactly halfway between these two states, the dryness fraction (Χ) is 0.5. Similarly, on the saturated steam line the steam is 100% dry.

Once it has received all of its enthalpy of evaporation, it reaches the saturated steam line. If it continues to be heated after this point, the pressure remains constant but the temperature of the steam will begin to rise as superheat is imparted.

The saturated water and saturated steam lines enclose a region in which a water/vapor mixture exists – wet steam. In the region to the left of the saturated water line only water exists, and in the region to the right of the saturated steam line only superheated steam exists.

Critical Point:

The point at which the saturated water and saturated steam lines meet is known as the critical point. As the pressure increases towards the critical point the enthalpy of evaporation decreases, until it becomes zero at the critical point. This suggests that water changes directly into saturated steam at the critical point.

Above the critical point the steam may be considered as a gas. The gaseous state is the most diffuse state in which the molecules have an almost unrestricted motion, and the volume increases without limit as the pressure is reduced.

The critical point is the highest temperature at which water can exist. Any compression at constant temperature above the critical point will not produce a phase change.

Compression at constant temperature below the critical point however, will result in liquefaction of the vapor as it passes from the superheated region into the wet steam region.

The critical point occurs at 374.15°C and 221.2 bar-a for steam. Above this pressure the steam is termed supercritical and no well-defined boiling point applies.

Specific Volume of Steam: The volume per unit of mass in “Cubic Meter per Kg” / “Cubic Feet per Pound”.

Specific Gravity of Steam: The mass per unit volume in ‘Kg per Cubic Meter’ / ‘Pound per Cubic Feet’.

However, steam at atmospheric pressure is of a limited practical use. This is because it cannot be conveyed under its own pressure along a steam pipe to the point of use.

As per the relation between Pressure and Volume of steam, (volume is reduced as pressure is increased) steam is usually generated in the boiler at a pressure of at least 7 bar g. The generation of steam at higher pressures enables the steam distribution pipes to be kept to a reasonable size.

As the steam pressure increases, the density of steam will also increase. As the specific volume is inversely related to the density, the specific volume will therefore, decrease with increasing pressure.

Figure shows the relationship of specific volume to pressure. This highlights that the greatest change in specific volume occurs at lower pressures, whereas at the higher end of the pressure scale there is much less change in specific volume.

Dryness fraction:-

Steam with a temperature equal to the boiling point at that pressure is known as dry saturated steam. However, to produce 100% dry steam in an industrial boiler is rarely possible, and the steam will usually contain droplets of water.

In practice, because of turbulence and splashing, as bubbles of steam break through the water surface, the steam space contains a mixture of water droplets and steam.

Steam produced in any shell-type boiler, where the heat is supplied only to the water and where the steam remains in contact with the water surface, may typically contain around 5% water by mass.

If the water content of the steam is 5% by mass, then the steam is said to be 95% dry and has a dryness fraction of 0.95.

The actual enthalpy of evaporation of wet steam is the product of the dryness fraction (Χ) and the specific enthalpy (hfg) from the steam tables. Wet steam will have lower usable heat energy than dry saturated steam.

Example:
Home
About Us
About Uni Klinger
Vision & Mission
Manufacturing Resources
Fluid Control Division
Fluid Sealing Division
Safety Valve and Control Valve Division
UKL Global Footprints
Products
Fluid Control Division
Valves
Piston Valves
Bellow Seal Valves
Disc Check Valve
High Pressure Valve
Steam Traps
Thermodynamic Steam Traps
Thermostatic Steam Traps
Ball Float Traps
Clean Steam Trap
Inverted Bucket Traps
Bi Metallic Bi Thermostatic Trap
Automatic Pumping Trap
Trap Modules
Intelligent Trap Valve Station
Steam supply and Condensate return Manifolds
Pipeline Accessories
Air Vent & Air Vent Assembly
T & Y Type Strainers
Air Eliminators
Moisture Separators
Sight Glass
Pressure Reducing Station
Heat Recovery Products
Flash Vessels
Pressured Power Pump Unit
Steam Injectors
Deaerator Head
Liquid Level Gauges
Bitherm
Leak Tector
SmartWatch
Hot Water Generation System
Fluid Sealing Division
Jointing Sheets
Compressed Asbestos Fiber (CAF)
Compressed Non-Asbestos Fiber (NCAF)
Expanded PTFE Sheets
Graphite sheet
Metallic/ Semi-Metallic Gaskets
Spiral Wound Gasket
Metal Jacketed Gasket
Kammprofile Gasket
Ring Joints
Gland Packing
Non-Asbestos Gland Packing
Industrial Gasket Division
Safety Valve and Control Valve Division
UKL-AST Safety Relief Valve
SMU-7000 Safety Relief Valve
SMFN -7000 & SU-7000 Safety Relief Valve
AST Spa Products
AST CV-8000 Control Valve
AST SMS-7100 Safety Valve for Steam Boiler
AST SVP-7200 Pilot Operated Safety Valve
Steam Engineering Services
Solutions
More Industries
Fertilizer Industry
Aerated Concrete Block Industry
Tyre Industry
Rice Industry
Sugar Industry
Edible Oil Industry
Captive Cogen Industry
Soap Industry
Textile Industry
Chemical Industry
Hotel Industry
Pharma Industry
Brewery Industry
Dairy Industry
Rubber Industry
Case Study
Case Study-Textile Industries
Case Study-Chemical Industry
Case Study-Tyre Industry
Ask the Expert
FAQs
Return On Invesment
ROI by Flash Vessel
ROI by Pressure Powered Pump
ROI by Pressure Reducing Station
Steam Engineering Guideline
Basic of Steam
What is Steam?
Water to Steam Formation
Properties of Steam
The Steam Phase Diagram
Type of Steam
Advantages of Steam
Benefits of Steam as Heat Transfer Media
Steam Network in Industries
The Boiler
Important Items in Steam Network
SWAI
Whats New
Contact Us
Sales and Factory Offices
Enquiry Form
Careers